3.3.52 \(\int x^2 (d+e x)^2 (d^2-e^2 x^2)^p \, dx\) [252]

Optimal. Leaf size=155 \[ -\frac {d^3 \left (d^2-e^2 x^2\right )^{1+p}}{e^3 (1+p)}-\frac {x^3 \left (d^2-e^2 x^2\right )^{1+p}}{5+2 p}+\frac {d \left (d^2-e^2 x^2\right )^{2+p}}{e^3 (2+p)}+\frac {2 d^2 (4+p) x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )}{3 (5+2 p)} \]

[Out]

-d^3*(-e^2*x^2+d^2)^(1+p)/e^3/(1+p)-x^3*(-e^2*x^2+d^2)^(1+p)/(5+2*p)+d*(-e^2*x^2+d^2)^(2+p)/e^3/(2+p)+2/3*d^2*
(4+p)*x^3*(-e^2*x^2+d^2)^p*hypergeom([3/2, -p],[5/2],e^2*x^2/d^2)/(5+2*p)/((1-e^2*x^2/d^2)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {1666, 470, 372, 371, 12, 272, 45} \begin {gather*} \frac {2 d^2 (p+4) x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )}{3 (2 p+5)}-\frac {x^3 \left (d^2-e^2 x^2\right )^{p+1}}{2 p+5}+\frac {d \left (d^2-e^2 x^2\right )^{p+2}}{e^3 (p+2)}-\frac {d^3 \left (d^2-e^2 x^2\right )^{p+1}}{e^3 (p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

-((d^3*(d^2 - e^2*x^2)^(1 + p))/(e^3*(1 + p))) - (x^3*(d^2 - e^2*x^2)^(1 + p))/(5 + 2*p) + (d*(d^2 - e^2*x^2)^
(2 + p))/(e^3*(2 + p)) + (2*d^2*(4 + p)*x^3*(d^2 - e^2*x^2)^p*Hypergeometric2F1[3/2, -p, 5/2, (e^2*x^2)/d^2])/
(3*(5 + 2*p)*(1 - (e^2*x^2)/d^2)^p)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 1666

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rubi steps

\begin {align*} \int x^2 (d+e x)^2 \left (d^2-e^2 x^2\right )^p \, dx &=\int 2 d e x^3 \left (d^2-e^2 x^2\right )^p \, dx+\int x^2 \left (d^2-e^2 x^2\right )^p \left (d^2+e^2 x^2\right ) \, dx\\ &=-\frac {x^3 \left (d^2-e^2 x^2\right )^{1+p}}{5+2 p}+(2 d e) \int x^3 \left (d^2-e^2 x^2\right )^p \, dx+\frac {\left (2 d^2 (4+p)\right ) \int x^2 \left (d^2-e^2 x^2\right )^p \, dx}{5+2 p}\\ &=-\frac {x^3 \left (d^2-e^2 x^2\right )^{1+p}}{5+2 p}+(d e) \text {Subst}\left (\int x \left (d^2-e^2 x\right )^p \, dx,x,x^2\right )+\frac {\left (2 d^2 (4+p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int x^2 \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx}{5+2 p}\\ &=-\frac {x^3 \left (d^2-e^2 x^2\right )^{1+p}}{5+2 p}+\frac {2 d^2 (4+p) x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )}{3 (5+2 p)}+(d e) \text {Subst}\left (\int \left (\frac {d^2 \left (d^2-e^2 x\right )^p}{e^2}-\frac {\left (d^2-e^2 x\right )^{1+p}}{e^2}\right ) \, dx,x,x^2\right )\\ &=-\frac {d^3 \left (d^2-e^2 x^2\right )^{1+p}}{e^3 (1+p)}-\frac {x^3 \left (d^2-e^2 x^2\right )^{1+p}}{5+2 p}+\frac {d \left (d^2-e^2 x^2\right )^{2+p}}{e^3 (2+p)}+\frac {2 d^2 (4+p) x^3 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )}{3 (5+2 p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 168, normalized size = 1.08 \begin {gather*} \frac {\left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (-15 d \left (d^2-e^2 x^2\right ) \left (1-\frac {e^2 x^2}{d^2}\right )^p \left (d^2+e^2 (1+p) x^2\right )+5 d^2 e^3 \left (2+3 p+p^2\right ) x^3 \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )+3 e^5 \left (2+3 p+p^2\right ) x^5 \, _2F_1\left (\frac {5}{2},-p;\frac {7}{2};\frac {e^2 x^2}{d^2}\right )\right )}{15 e^3 (1+p) (2+p)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*(-15*d*(d^2 - e^2*x^2)*(1 - (e^2*x^2)/d^2)^p*(d^2 + e^2*(1 + p)*x^2) + 5*d^2*e^3*(2 + 3*p +
 p^2)*x^3*Hypergeometric2F1[3/2, -p, 5/2, (e^2*x^2)/d^2] + 3*e^5*(2 + 3*p + p^2)*x^5*Hypergeometric2F1[5/2, -p
, 7/2, (e^2*x^2)/d^2]))/(15*e^3*(1 + p)*(2 + p)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int x^{2} \left (e x +d \right )^{2} \left (-e^{2} x^{2}+d^{2}\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

[Out]

int(x^2*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((x*e + d)^2*(-x^2*e^2 + d^2)^p*x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((x^4*e^2 + 2*d*x^3*e + d^2*x^2)*(-x^2*e^2 + d^2)^p, x)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 350 vs. \(2 (128) = 256\).
time = 2.32, size = 425, normalized size = 2.74 \begin {gather*} \frac {d^{2} d^{2 p} x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, - p \\ \frac {5}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{3} + 2 d e \left (\begin {cases} \frac {x^{4} \left (d^{2}\right )^{p}}{4} & \text {for}\: e = 0 \\- \frac {d^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{2}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {e^{2} x^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {e^{2} x^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} & \text {for}\: p = -2 \\- \frac {d^{2} \log {\left (- \frac {d}{e} + x \right )}}{2 e^{4}} - \frac {d^{2} \log {\left (\frac {d}{e} + x \right )}}{2 e^{4}} - \frac {x^{2}}{2 e^{2}} & \text {for}\: p = -1 \\- \frac {d^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} - \frac {d^{2} e^{2} p x^{2} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} p x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} & \text {otherwise} \end {cases}\right ) + \frac {d^{2 p} e^{2} x^{5} {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{2}, - p \\ \frac {7}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x+d)**2*(-e**2*x**2+d**2)**p,x)

[Out]

d**2*d**(2*p)*x**3*hyper((3/2, -p), (5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/3 + 2*d*e*Piecewise((x**4*(d**2)
**p/4, Eq(e, 0)), (-d**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**2*log(d/e + x)/(-2*d**2*e**4 + 2*e**6
*x**2) - d**2/(-2*d**2*e**4 + 2*e**6*x**2) + e**2*x**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) + e**2*x**2*
log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2), Eq(p, -2)), (-d**2*log(-d/e + x)/(2*e**4) - d**2*log(d/e + x)/(2*e*
*4) - x**2/(2*e**2), Eq(p, -1)), (-d**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) - d**2*e**2*p*
x**2*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2
+ 6*e**4*p + 4*e**4) + e**4*x**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4), True)) + d**(2*p)*e*
*2*x**5*hyper((5/2, -p), (7/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/5

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((x*e + d)^2*(-x^2*e^2 + d^2)^p*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,{\left (d^2-e^2\,x^2\right )}^p\,{\left (d+e\,x\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(d^2 - e^2*x^2)^p*(d + e*x)^2,x)

[Out]

int(x^2*(d^2 - e^2*x^2)^p*(d + e*x)^2, x)

________________________________________________________________________________________